
 CAPcelerate:
 Capabilities for Heterogeneous Accelerators

 Theo Markettos, Paul Metzger, Matthew Naylor, Timothy Jones
 Department of Computer Science and Technology, University of Cambridge

 theo.markettos@cl.cam.ac.uk

Modern systems have multiple heterogenous
accelerators. Accelerators:

● run code independently of the CPU
● have complex software stacks spanning
application, compiler, host OS kernel,
firmware and accelerator compute

Accelerator software stacks are poorly
defended from compromise and a historic
source of vulnerabilities

Key question: Can we use capabilities in
accelerator hardware and software to
improve security?

Research direction:
Capability-enabled ‘GPU’ hardware
● Q: Is it feasible to implement capabilities in an
accelerator with minimal impact on
performance?

● Q: Can we efficiently enable multiple
distrusting users of the GPU hardware?

● DONE: Built a GPU-like SIMT processor on
FPGA (2048 concurrent threads)

● WIP: Added capability support to the hardware
● WIP: Exploring microarchitectural challenges
to make design suitable for capabilities with
acceptable performance

● TODO: Explore software stack for such an
accelerator

Research direction:
Characterisation and tracing
● GPUs are popular accelerators with the highly
performance-critical hardware and rich
software stacks – good case study

● Understand how all the GPU
hardware/software pieces fit together

● Many are complex / proprietary /
undocumented

● Understand what commercial accelerator
hardware actually does

● WIP: Reason about its security models
● WIP: Reason about how capabilities can be
integrated into the hardware/software
models, eg memory management

Research direction:
Accelerator software security
● Key source of vulnerabilities is hardware
drivers

● GPU drivers are the largest driver codebases
in existence

● Q: Can we use capabilities and CHERI
compartments to apply principle of least
privilege to drivers?

● Q: Can we improve security by moving
privileged code from kernel driver into a user-
space CHERI compartment?

● Q: What can we do to improve security in the
absence of a capability-enabled GPU?

● WIP: Compartmentalisation of the Panfrost
kernel driver for Arm Mali GPUs

● TODO: Port to Morello hardware and its
physical Mali GPU

● TODO: Explore implications for other parts of
the stack

● TODO: Explore interaction when the hardware
does understand capabilities

CPU

GPU AI

Crypto
DSP /

modem

OpenCL OpenGL Vulkan

OneAPI CUDA

LLVM Mesa

AMDGPU
Panfrost

(Arm Mali)
VideoCore
(Broadcom)

i915
(Intel)

NVIDIA
driver DRM

Management
core OS

eg ThreadX

Linux user-
space driver
components

Linux kernel
driver

components

SIMT core
runtime

Audio core
runtime

Application CPU cores (eg Morello ARMv8)

Video codec
runtime

CPU
hardware

Management
core

SIMT
execution units

Audio
processor

Video codec
unit

On-GPU
firmware

GPU
hardware

Display ctrl
runtime

HDMI/LCD
controller

	Page 1

