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Modern systems have multiple heterogenous 
accelerators.  Accelerators:

● run code independently of the CPU
● have complex software stacks spanning 
application, compiler, host OS kernel, 
firmware and accelerator compute

Accelerator software stacks are poorly 
defended from compromise and a historic 
source of vulnerabilities

Key question: Can we use capabilities in 
accelerator hardware and software to 
improve security?

 

Research direction:
Capability-enabled ‘GPU’ hardware
● Q: Is it feasible to implement capabilities in an 
accelerator with minimal impact on 
performance?

● Q: Can we efficiently enable multiple 
distrusting users of the GPU hardware?

● DONE: Built a GPU-like SIMT processor on 
FPGA (2048 concurrent threads)

● WIP: Added capability support to the hardware
● WIP: Exploring microarchitectural challenges 
to make design suitable for capabilities with 
acceptable performance

● TODO: Explore software stack for such an 
accelerator

Research direction:
Characterisation and tracing
● GPUs are popular accelerators with the highly 
performance-critical hardware and rich 
software stacks – good case study

● Understand how all the GPU 
hardware/software pieces fit together

● Many are complex / proprietary / 
undocumented

● Understand what commercial accelerator 
hardware actually does

● WIP: Reason about its security models
● WIP: Reason about how capabilities can be 
integrated into the hardware/software 
models, eg memory management

Research direction:
Accelerator software security
● Key source of vulnerabilities is hardware 
drivers

● GPU drivers are the largest driver codebases 
in existence

● Q: Can we use capabilities and CHERI 
compartments to apply principle of least 
privilege to drivers?

● Q: Can we improve security by moving 
privileged code from kernel driver into a user-
space CHERI compartment?

● Q: What can we do to improve security in the 
absence of a capability-enabled GPU?

● WIP: Compartmentalisation of the Panfrost 
kernel driver for Arm Mali GPUs

● TODO: Port to Morello hardware and its 
physical Mali GPU

● TODO: Explore implications for other parts of 
the stack

● TODO: Explore interaction when the hardware 
does understand capabilities
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