Towards a CHERI-Enabled GPU

CAPcelerate Team
University of Cambridge

Background

// CUDA device kernel
oo oo overread() {
- data = ©oxdala;

int secret = Oxcode: GPUs are widely programmed in C-based

int* 51(:r = &data;1c .) languages such as CUDA and OpenCL,

printf("Address of data: %p\n", ptr); : ”

printf("Address of secret: %p\n", &secret); mherlt.lng W?ak memory safetY' Undeﬂ.ned

printf("Secret: %x\n", ptr[1]); oehaviours in programs can be exploited
| oy attackers to execute arbitrary code or
s O A e eak sensitive information. To combat this,
Cecret: code ' we are exploring a CHERI-enabled GPU.

Approach

We have developed a prototype GPU based on the
Single-Instruction Multiple-Threads (SIMT) model
popularised by NVIDIA and AMD. It implements
the RISC-V ISA, which will allow it to be targeted
from existing CHERI compiler tools. On top of this,
we have implemented a CUDA-like C++ library
and a suite of benchmark kernels. The prototype
is functional and exhibits high compute density on
FPGA, and will allow us to experiment with various
forms of CHERI extension.

Challenges

; Threads executing in lock

. step will all set t@ to var Naive integration of CHERI into a massively
S8 ey el | threaded GPU will lead to a large register file
; If the address is scalar, ,

; so is the loaded value storage overhead. However, we hypothesise
L, HRE) that threads executing in lock-step will often
; If the inputs are scalar, - .

; so is the output share capability meta-data. If so, a technique

add t2, t1, ti known as scalarisation should be able to

reduce storage overheads significantly.

LIS
XN

bA A

A0
i

IS0
O e

https://github.com/blarney-lang/pebbles

