
Towards a CHERI-Enabled GPU
CAPcelerate Team
University of Cambridge

Background

Approach

Challenges

 // CUDA device kernel
 __global__ void overread() {
 int data = 0xda1a;
 int secret = 0xc0de;
 int* ptr = &data;
 printf("Address of data: %p\n", ptr);
 printf("Address of secret: %p\n", &secret);
 printf("Secret: %x\n", ptr[1]);
 }

Address of data: 0x3fffd30
Address of secret: 0x3fffd34
Secret: c0de

Data Cache

DRAM (DDR3/DDR4)

Coalescing Unit

SIMT Core (RV32IMA)
32 Lanes, 64 Warps

Scalar CPU
(RV32IM)

Shuffle-Exchange

...

...

SRAM SRAM SRAM

...
...

RISC-V CPU + GPU SoC
■ Unified ISA for CPU & GPU
■ Baseline for CHERI extensions
■ Optimised for FPGA
■ Provides CUDA-like API
https://github.com/blarney-lang/pebbles

GPUs are widely programmed in C-based
languages such as CUDA and OpenCL,
inheriting weak memory safety. Undefined
behaviours in programs can be exploited
by attackers to execute arbitrary code or
leak sensitive information. To combat this,
we are exploring a CHERI-enabled GPU.

We have developed a prototype GPU based on the
Single-Instruction Multiple-Threads (SIMT) model
popularised by NVIDIA and AMD. It implements
the RISC-V ISA, which will allow it to be targeted
from existing CHERI compiler tools. On top of this,
we have implemented a CUDA-like C++ library
and a suite of benchmark kernels. The prototype
is functional and exhibits high compute density on
FPGA, and will allow us to experiment with various
forms of CHERI extension.

Naive integration of CHERI into a massively
threaded GPU will lead to a large register file
storage overhead. However, we hypothesise
that threads executing in lock-step will often
share capability meta-data. If so, a technique
known as scalarisation should be able to
reduce storage overheads significantly.

; Threads executing in lock
; step will all set t0 to var
la t0, var
; If the address is scalar,
; so is the loaded value
lw t1, t0(0)
; If the inputs are scalar,
; so is the output
add t2, t1, t1 Scalarisation is a technique that

detects & tracks uniform vectors
and processes them on a single
processor/lane, reducing power
and storage requirements.

https://github.com/blarney-lang/pebbles

